銷售熱線:
135-8081-0629
電話:
0769-88187991
傳真:
0769-88187992
郵箱:
joehuang1979@163.com
網址:
digitalprinter.com.cn
增韌劑是具有降低復合材料脆性和提高復合材料抗沖擊性能的一類助劑。
可分為活性增韌劑與非活性增韌劑兩類,活性增韌劑是指其分子鏈上含有能與基體樹脂反應的活性基團,它能形成網絡結構,增加一部分柔性鏈,從而提高復合材料的抗沖擊性能。非活性增韌劑則是一類與基體樹脂很好相溶、但不參與化學反應的增韌劑。
增韌原理
復合材料在受沖擊載荷時材料發(fā)生破壞(斷裂),其韌性大小取決于材料吸收沖擊能量大小和抵抗裂紋擴展的能力。在復合材料中,增強材料與基體在增韌上是如何起作用的呢?經過分析及研究,提出了許多復合材料的增韌機制,可以應用到復合材料。
1、彈性體增韌機理
彈性體直接吸收能量,當試樣受到沖擊時會產生微裂紋,這時橡膠顆??缭搅鸭y兩岸, 裂紋要發(fā)展就必須拉伸橡膠,橡膠形變過程中要吸收大量能量,從而提高了塑料的沖擊強度。
2、屈服理論
橡膠增韌塑料高沖擊強度主要來源于基體樹脂發(fā)生了很大的屈服形變,基體樹脂產生很大屈服形變的原因,是橡膠的熱膨脹系數和泊松比均大于塑料的,在成型過程中冷卻階段的熱收縮和形變過程中的橫向收縮對周圍基體產生靜水張應力,使基體樹脂的自由體積增加, 降低其玻璃化轉變溫度,易于產生塑性形變而提高韌性。另一方面是橡膠粒子的應力集中效應引起的 。
3、裂紋核心理論
橡膠顆粒充作應力集中點,產生了大量小裂紋而不是少量大裂紋,擴展眾多的小裂紋比擴展少數大裂紋需要較多的能量。同時,大量小裂紋的應力場相互干擾,減弱了裂紋發(fā)展的前沿應力,從而,會減緩裂紋發(fā)展并導致裂紋的終止。
4、多重銀紋理論
由于增韌塑料中橡膠粒子數目極多,大量的應力集中物引發(fā)大量銀紋,由此可以耗散大量能量。橡膠粒子還是銀紋終止劑,小粒子不能終止銀紋。
5、銀紋-剪切帶理論
這是業(yè)內普遍接受的一個重要理論。大量實驗表明,聚合物形變機理包括兩個過程:一是剪切形變過程,二是銀紋化過程。剪切過程包括彌散性的剪切屈服形變和形成局部剪切帶兩種情況。剪切形變只是物體形狀的改變,分子間的內聚能和物體的密度基本不變。銀紋化過程則使物體的密度大大下降。一方面,銀紋體中有空洞,說明銀紋化造成了材料一定的損傷,是亞微觀斷裂破壞的先兆;另一方面,銀紋在形成、生長過程中消耗了大量能量,約束了裂紋的擴展,使材料的韌性提高,是聚合物增韌的力學機制之一。所以,正確認識銀紋化現象,是認識高分子材料變形和斷裂過程的核心,是進行共混改性塑料,尤其是增韌塑料設計的關鍵之一。
銀紋的一般特征如下:
1.銀紋是在拉伸力場中產生的,銀紋面總是與拉伸力方向垂直;在壓力場中不會產生銀紋;Argon的研究發(fā)現,在純剪切力場中銀紋也能擴展。
2.銀紋在玻璃態(tài)、結晶態(tài)聚合物中都能產生、發(fā)展。
3.銀紋能在聚合物表面、內部單獨引發(fā)、生長,也可在裂紋端部形成。在裂紋端部形成的銀紋,是裂紋端部塑性屈服的一種形式。
4.在單一應力作用下引發(fā)的銀紋,成為應力銀紋。在短時大應力作用下可以引發(fā)銀紋, 在長期應力作用下,即蠕變過程中也能引發(fā)銀紋,在交變應力作用下也可引發(fā)銀紋。受應力和溶劑聯合作用引發(fā)的銀紋,稱為應力-溶劑銀紋。溶劑能加速銀紋的引發(fā)和生長。
5.銀紋的外形與裂紋相似,但與裂紋的結果明顯不同。裂紋體中是空的,而銀紋是由銀紋質和空洞組成的。空洞的體積分數為50p%。銀紋質取向的高分子和/或高分子微小聚集體組成的微纖,直徑和間距為幾到幾十納米,其大小與聚合物的結構、環(huán)境溫度、施力速度、應力大小等因素有關。銀紋主微纖與主應力方向呈某一角度取向排列,橫系的存在使銀紋微纖也構成連續(xù)相,與空洞連續(xù)相交織在一起成為一個復雜的網絡結構。橫系結構使得銀紋有一定橫向承載能力,銀紋微纖之間可以相互傳遞應力。這種結構的形成是由于強度較高的纏結鏈段被同時轉入兩相鄰銀紋微纖的結果。
銀紋引發(fā)的原因是聚合物中以及表面存在應力集中物,拉伸應力作用下產生應力集中效應。首先在局部應力集中處產生塑性剪切變形,由于聚合物應變軟化的特性,局部塑性變形量迅速增大,在塑性變形區(qū)內逐漸積累足夠的橫向應力分量。這是因為沿拉伸應力方向伸長時,聚合物材料必然在橫向方向收縮,就產生抵抗這種收縮傾向的等效于作用在橫向的應力場。當橫向張力增大到某一臨界值時,局部塑性變形區(qū)內聚合物中被引發(fā)微空洞;隨后,微空洞間的高分子和/或高分子微小聚集體繼續(xù)伸長變形,微空洞長大并彼此復合,最終形成銀紋中橢圓空洞。銀紋體形成時所消耗的能量稱為銀紋生成能,包括消耗的4種形式的能量:生成銀紋時的塑性功,黏彈功,形成空洞的表面功及化學鍵的斷裂能。
銀紋終止的具體原因有多種,如銀紋發(fā)展遇到了剪切帶,或銀紋端部引發(fā)剪切帶,或銀紋的支化,以及其它使銀紋端部應力集中因子減小的因素.
剪切帶內分子鏈或高分子的微小聚集體有很大程度的取向,取向方向為切應力和拉伸應力合力的方向。剪切帶的產生只是引起試樣形狀改變,聚合物的內聚能以及密度基本上不受影響。剪切帶與拉伸力方向間的夾角都接近45°,但由于大形變時試樣產生各向異性,試樣的體積也可能發(fā)生微小的變化, 所以與拉伸力方向間的夾角往往與45°有偏差。單軸拉伸力作用聚合物試樣不能產生剪切帶,單軸壓縮力作用下也可能產生剪切帶,局部大形變處不是出現細頸,而是鼓凸。拉伸和壓縮作用產生的剪切帶與應力方向間的夾角會不同。如PVC,壓縮時剪切帶與壓縮力方向間夾角為46°,拉伸時夾角為55°。取向單元取向情況也會有差別:拉伸時,取向單元取向方向與拉伸力方向間夾角較??;壓縮時,取向單元方向與壓力軸向間夾角較大。
剪切帶的產生和剪切帶的尖銳程度,除與聚合物的結構密切相關外,還與溫度、形變速率有關。如溫度過低時,剪切屈服應力過高,試樣不能產生剪切屈服,而是橫截面處引發(fā)銀紋,并迅速發(fā)展成裂紋,試樣呈脆性斷裂;溫度過高,整個試樣容易發(fā)生均勻的塑性形變, 只能產生彌散型的剪切形變而不會產生剪切帶。加大形變速率的影響與降低溫度是等效的。
銀紋與剪切帶之間存在相互作用。很多情況下,在應力作用下,聚合物會同時產生剪切帶與銀紋,兩者相互作用,成為影響聚合物形變乃至破壞的重要因素。聚合物形變過程中, 剪切帶和銀紋兩種機理同時存在,相互作用時,使聚合物從脆性破壞轉變?yōu)轫g性破壞。
銀紋與剪切帶的相互作用可能存在三種方式:
一、銀紋遇上已存在的剪切帶而得以與其合伙終止,這是由于剪切帶內大分子高度取向限制了銀紋的發(fā)展;
二、在應力高度集中的銀紋尖端引發(fā)新的剪切帶,新產生的剪切帶反過來又終止銀紋的發(fā)展;
三、剪切帶使銀紋的引發(fā)與增長速率下降。該理論認為橡膠增韌的主要原因是銀紋和剪切帶的大量產生和銀紋與剪切帶相互作用的結果。
橡膠顆粒的第一個重要作用就是充當應力集中中心,誘發(fā)大量銀紋和剪切帶,大量銀紋或剪切帶的產生和發(fā)展需要消耗大量能量。銀紋和剪切帶所占比例與基體性質有關,基體的韌性越大,剪切帶所占的比例越高;同時,也與形變速率有關,形變速率增加時,銀紋化所占的比例就會增加。
橡膠顆粒第二個重要作用就是控制銀紋的發(fā)展,及時終止銀紋。在外力作用過程中,橡膠顆粒產生形變,不僅產生大量的小銀紋或剪切帶,吸收大量的能量,而且,又能及時將其產生的銀紋終止而不致發(fā)展成破壞性的裂紋。
銀紋-剪切帶理論的特點是既考慮了橡膠顆粒的作用,又肯定了樹脂連續(xù)相性能的影響, 同時明確了銀紋的雙重功能,即銀紋產生和發(fā)展消耗大量的能量,可提高材料的破裂能;銀紋又是產生裂紋并導致材料破壞的先導。但這一理論的缺陷是忽視了基體連續(xù)相與橡膠分散相之間的作用問題。應該說,聚合物多相體系的界面性質對材料性能有很大的影響。
6空穴化理論
空穴化理論是指在低溫或高速形變過程中,在三維應力作用下,發(fā)生橡膠粒子內部或橡膠粒子與基體界面層的空穴化現象。該理論認為:橡膠改性的塑料在外力作用下,分散相橡膠顆粒由于應力集中,導致橡膠與基體的界面和自身產生空洞,橡膠顆粒一旦被空化,橡膠周圍的靜水張應力被釋放,空洞之間薄的基體韌帶的應力狀態(tài),從三維變?yōu)橐痪S,并將平面應變轉化為平面應力,而這種新的應力狀態(tài)有利于剪切帶的形成。因此,空穴化本身不能構成材料的脆韌轉變,它只是導致材料應力狀態(tài)的轉變,從而引發(fā)剪切屈服,阻止裂紋進一步擴展,提高材料韌性。
來源:網絡整理,如有侵權,請聯系刪除。
下一篇:適用于聚丙烯PP的阻燃劑大盤點!